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We characterize the errors associated with open-loop control of a microelectromechanical system deform-
able mirror (DM) using an approach that combines sparse calibration of the electrostatic actuator state
space with an elastic plate model of the mirror facesheet. We quantify sources of measurement error and
modeling error and demonstrate that the DM can be shaped in a single step to a tolerance of ∼8 nm of
that achievable with iterative feedback-based closed-loop control. Zernike polynomials with up to 2:5 μm
amplitude were made with this approach and yielded a shape error of <25 nm rms in most cases.
Residual errors were shown to be due primarily to spatial resolution limits inherent in the DM (e.g.,
uncontrollable errors). © 2010 Optical Society of America
OCIS codes: 230.4040, 230.3990.

1. Introduction

Accurate open-loop control of deformable mirrors
(DMs) promises to enable an emerging class of adap-
tive optics imaging instruments, those in which con-
ventional feedback from a wavefront sensor is not
practical. Several such advanced instruments are
envisioned for next-generation telescopes and micro-
scopes. For example, multiobject adaptive optics is
an instrument concept that would allow high-
resolution imaging of a large number of faint objects
across a wide field of view in an extremely large tele-
scope. This concept would require controlling multi-
ple DMs in an open loop because the DMs would
modify the wavefront downstream of the wavefront
sensor [1–3]. In microscopy, open-loop DM control
has enabled new control approaches to nonlinear mi-
croscopy for high-resolution subsurface imaging. In
two-photon excitation fluorescence imaging through

biological tissue, for example, it has been found that
even without a wavefront sensor for feedback, precise
open-loop control of DM shapes in an adaptive optics
system can yield rapid compensation of low-order
aberrations [4–7].

The development of an accurate open-loop control
algorithm of the microelectromechanical system
(MEMS) DM with a continuous facesheet (Fig. 1)
is complicated by the nonlinear relationship between
the input voltage and the resulting actuator deflec-
tion as well as the effect of the coupling between
neighboring actuators [8]. Previous open-loop control
algorithms for these DMs used empirical and math-
ematical models [8–10]. Morzinski et al. [10] were
able to predict voltages for 500 nm amplitude mirror
shapes with residual errors of 15 nm rms using an
empirical calibration of actuator behavior. Vogel and
Yang [9] introduced a fully analytical approach using
a coupled system of nonlinear partial differential
equations (PDEs) for the mirror facesheet and actua-
tor. Later, Stewart et al. [11] used an approach
similar to the Morzinski method with a different
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calibration scheme and a different approach of treat-
ing the plate equation of the mirror facesheet and
were able to predict voltages for 1:5 μm amplitude
mirror shapes with residual errors of 15 nm rms.

Prior proof-of-concept studies of open-loop control
with the DMs used in the present work (Boston Mi-
cromachines Multi-DM 140-actuator continuous)
were sometimes limited in scope. For example, open-
loop control algorithms were sometimes evaluated,
using as a target shape a previously measured sur-
face map of the actuated DM. Also, these prior stud-
ies often tested the controller against relatively
small peak-to-valley deflections (less than 600 nm),
though these DMs have a usable range of up to
3:5 μm. Using a previously measured DM mirror
shape ensures that the desired control target shape
is achievable but fails to test the effectiveness of
control for more arbitrary wavefront shapes, which
might be comprised of spatial frequencies that
exceed those within the DM controllable range. An-
other limitation in the prior work was that open-loop
control algorithms for MEMS DMs were assessed by
measuring the change in shape of the DM with re-
spect to its initial, unpowered shape. In the current
work, we report on efforts to produce a prescribed net
shape, including compensation of any unpowered
shape error on the DM. The former approach will be
referred to in this paper as “differential” shape
control, while the latter will be referred to as “non-
differential” or “true” shape control. In our prior ef-
forts to develop an open-loop control algorithm [8],
we postulated that the single-actuator empirical ca-
libration employed might be improved by calibration
of all actuators in the array to account for any actua-
tor variability within the array. In the work reported
here, we demonstrate results from a sparse, fast, par-
allel calibration of all actuators to account for small
systematic differences among actuators in the array.
We compare errors associated with open-loop control
using a single-actuator calibration to that achieved
with full array calibration. Another minor improve-
ment made to the open-loop control algorithmwas an
enhancement to the filtering method used in calibra-
tion experiments. These improvements have led to
increased accuracy over a wider variety of deflection
profiles, including flattening the mirror, and control-
ling “nondifferential” shapes of mathematically
defined ideal shapes such as low-order Zernike poly-
nomials. We begin with a review of the different

open-loop control algorithms for MEMS DMs, fol-
lowed by a derivation of the form of the facesheet
plate equation. A demonstration of the algorithm
for large amplitude (>1:5 μm) and small amplitude
(500 nm) deflections follows along with a quantifica-
tion of the sources of errors.

2. Deformable Mirror Model for Open-Loop Control

A 400 μm pitch DM with 3:5 μm stroke and 144 ac-
tuators (12 × 12) is used to demonstrate the open-
loop control and evaluate algorithm and system
errors. The DM has an aperture width of 4:4 mm
and a facesheet thickness of 3 μm. One of the char-
acteristics of the continuous facesheet DM is in-
teractuator coupling through the mirror facesheet
[10–12]. Overcoming interactuator mechanical cou-
pling through the mirror facesheet is achieved by es-
tablishing a DM model that consists of two coupled
mechanical subsystems: the continuous facesheet
and the array of actuators connected to the faces-
heet via rigid posts [8–10]. We begin our mirror face-
sheet model with the generalized form of out-of-plane
plate deflections experiencing bending and stretch-
ing and show the assumptions and derivations of
the in-plane forces used in Stewart et al. [11]. We
model the out-of-plane deflections using a fourth-
order PDE with a nonlinear second-order term to ac-
count for the effects of the facesheet stretching [13]:

∇4wðx; yÞ ¼ 1
D

!
qðx; yÞ þNx

∂2wðx; yÞ
∂x2

þNy
∂2wðx; yÞ

∂y2

þ 2Nxy
∂2wðx; yÞ
∂x∂y

"
; ð1Þ

where Nx and Ny are in-plane membrane forces per
unit length (due to stretching). Nxy, the in-plane
shear force per unit length, is ignored in this problem
because themirror facesheet is rigidly attached to ac-
tuators via posts experiencing no bending moments;
qðx; yÞ is the surface normal distributed load respon-
sible for producing mirror facesheet deflection
wðx; yÞ, and D is the plate flexural rigidity, given by

D ¼ Eh3

12ð1 − ν2Þ ; ð2Þ

where E is the Young modulus, ν is the Poisson
ration, and h is the facesheet thickness. The expres-
sions for the in-planemembrane forcesNx that arises
due stretching can be obtained from the stress resul-
tant σxx:

Nx ¼
Z

h

σxxdz ¼
Z

h

E
1 − ν2 εxdz: ð3Þ

The strain can be approximated as 1
2 ð

∂w
∂xÞ

2, and (3)
becomes

Fig. 1. (Color online) Continuous facesheet MEMS DM cross
section.
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Inserting Eq. (4) and an analogous expression for Ny
into Eq. (1), we obtain the governing equation for out-
of-plane deflections of a linear elastic plate experien-
cing bending and stretching as presented in [8]:

∇4wðx; yÞ ¼ qðx; yÞ
D

þ 6
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The assumptions and limitations of this model are
stated in Stewart et al. [11] and are not repeated
here. We use the numerical approximation of the bi-
harmonic and Laplacian (fourth- and second-order
derivatives) to compute the mirror forces for given
mirror deflections. The remaining forces (actuator
and electrostatic) are not calculated. Instead, our al-
gorithm proceeds with an empirical characterization
of the DM actuators, which consists of applying a
variety of arbitrary shapes of known voltages to cre-
ate a voltage lookup that spans the achievable mirror
shape space. The main drawback of this technique is
its susceptibility to noise because of the four numer-
ical differentiations to approximate the biharmonic.

3. Other Microelectromechanical System Deformable
Mirror Open-Loop Control Approaches

Modeling efforts carried out by Morzinski et al. [10]
used a similar model to the one presented in this pa-
per without a nonlinear second-order term to account
for the effects of facesheet stretching at large deflec-
tions (>1:5 μm). Their routine was able to predict
voltages for 500 nm amplitude mirror shapes with
residual errors of 15 nm rms. Their approach for sol-
ving for forces significantly differs from the one we
proposed in Stewart et al. [11]. The authors consid-
ered an influence functionKðx; y; xn; ynÞ giving deflec-

tion ðx; yÞ when a unit load is applied at some point
ðxn; ynÞ. Following a circular plate approximation of
the rectangular plate equation, a free-space Green
function is utilized for the biharmonic operator.

Vogel and Yang [9] introduced a coupled system of
nonlinear PDEs for the mirror facesheet and actua-
tor. This model did not take into account nonlinearity
when the displacements are large relative to the
plate thickness (stretching) and assumed a parallel
plate electrostatic deflection of the actuators. Vogel
et al. recently presented a parameter estimation
method based on their prior work. In this work, the
facesheet stretching is accounted for with the inclu-
sion of a linear second-order tension term and the
actuators are treated like linear springs [14]. The
model also includes actuator offset terms to account
for slight initial dome shapes exhibited by many
MEMS DMs: Dfs∇4w − T∇2w ¼

Pna
i¼1 piδðx − xiÞ,

where wðxÞ is the out-of-plane deflection of the face-
sheet at location x ¼ ðx; yÞ, Dfs is the flexural rigidity
of the facesheet, T is the facesheet tension, pi is the
point load of the facesheet due to the ith actuator, xi
is the actuator location, δð·Þ is the Dirac-delta, na is
the number of actuators, and ∇4 is the squared La-
placian operator. The algebraic form of the actuator
deflection is assumed to have the form zi ¼ rðpi;ViÞ,
i ¼ 1;…;na, where zi is the deflection of the ith actua-
tor and Vi is the associated voltage to cause the
deflection. Applying to all actuators a bias voltage
!V yielding zero deflection (pi ¼ 0when bias ¼ !V), fol-
lowed by a voltage Vi resulting in very small deflec-
tion, it can be shown that the facesheet deflection of
the facesheet DM caused by the net voltage change
ai ¼ Vi − !V is wðxiÞ ¼

∂rð0;!VÞ
∂p pi þ

∂rð0;!VÞ
∂V ai þ Eðpi

2Þþ
Eðai

2Þ, where E is an error function. The authors
then consider the case of small deflection regime
with a linear actuator response of the form:
rðp;VÞ ¼ k−1pþ γV . Ignoring the error terms and sol-
ving for pi, the DM PDE with a linear actuator re-
sponse function proposed by Vogel et al. [14] takes
the form ∇4wþ β1∇2wþ β2

Pna
i¼1 wðxiÞδðx − xiÞ ¼ β3Pna

i¼1 aiδðx − xiÞ; where β1 ¼ T
Dfs

; β2 ¼ k
Dfs

; β3 ¼ γβ2:
A significant departure from their previous algo-

rithm involves the use of output least squares to
estimate parameters. Using this method, the param-
eters of the PDE (β parameters) are determined by
minimizing the deviation between the output of
the model and the observation data through an objec-
tive or cost function. The algorithm thus searches for
parameter values that yield a model that provides
optimal fit of the data. This approach is robust, as
it involves no numerical differentiation, in contrast
to our approach in which fourth-order numerical dif-
ferentiation amplifies high spatial frequency noise in
the calibration measurement. However, MEMS DMs
actuator nonlinear effects and their interactions are
not yet well understood, and as a result, modeling of
the actuator response for large deflections has not
yet been achieved.

Fig. 2. (Color online) Butterworth filtered DM pressure from
“checkerboard” pattern shape with cutoff frequency ¼ 250 μm.
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4. Actuator Calibration and Open-Loop
Control Scheme

The major refinements to our previous algorithm
relate to measurement filtering (Fig. 2), characteri-
zation methods (Fig. 3), and controlling the nondif-
ferential shape of the mirror. These changes have
led to increased accuracy over a wider variety of
deflection profiles.

As in [8], the open-loop control software is based in
MATLAB, which also performs all hardware commu-
nication and data analysis. The software controls a
14 bit high-voltage power supply, and a Zygo New-
View 6000 surface mapping interferometric micro-
scope is used to asynchronously apply the desired
shapes to the DM and record surface data. The driver
voltage resolution is ∼20 mV. The microscope mag-
nification and CCD resolution used to view the full
DM aperture determine the number of surface data
points used in mirror calibration, which is about 40
pixels per subaperture.

Filtering the deflection measurement during cali-
bration is an essential step to reduce the effect of
measurement noise andmirror surface defects on the
fourth-order differentiation that yields mirror forces.
Previous work on control of continuous MEMS DMs
has been conducted with filter settings that block
spatial frequency range of the mirror [8]. Using that
filter led to unacceptable loss of information regard-
ing the bending and stretching of the DM. In this
work we found that a better filter to employ was a
fourth-order Butterworth with a cutoff wavelength
(250 μm) just below two cycles per actuator spacing.
A Butterworth filter is maximally flat in the pass-
band, so that no deflection information is lost. It ex-
hibits a gradual roll-off above the cutoff frequency.
The filtering method was effective because of the re-
latively small DM surface defects and the low spatial
frequency content of the measurement noise. The ef-
fectiveness of the filter can also be attributed to the
bending and stretching of the DM having either re-
latively low spatial frequency effects, or it is only the

low spatial frequency components of these effects
that contributed to the model. The rms error between
the filtered and unfiltered data is 2 nm. After low-
pass filtering, the calculated forces are largest in
the vicinity of the posts, where they would be ex-
pected for this physical system. Another source of er-
ror is the nonuniformity of actuator mechanical
behavior that results from tolerances in the MEMS
manufacturing process. The error introduced by
calibrating a single actuator (and assuming all
others to be identical) as opposed to calibrating all
actuators was found to be 14 nm rms. In open-loop
control, this led to DM flattening results with
13–15 nm rms error for the single-actuator calibra-
tion as opposed to 6 nm rms for the full array actua-
tor calibration (Fig. 4). Similarly, the residual error

Fig. 3. (Color online) Slice of the dataset fw;FM ;Vg shown for
actuator 66. Mirror forces (FM) plotted against deflections wðx; yÞ.
In the “checker” pattern (red þ), actuators are divided in two
groups and a range of linearly spaced square voltages is applied
to each group independently. The “3 × 3 grid” is essentially a
single-actuator calibration where a group of nine actuators are
considered at a time; identical voltages are applied to a ring
(the outer eight) to vary FM at the central actuator.

Fig. 4. (Color online) Open-loop DM flattening. The DM is flattened to 6 nm within the unfiltered rms error using the calibration map
from all actuators (left). This surface figure is dominated by high spatial frequency DM features that are not within the controllable band.
Typical surface figure rms flattening using single-actuator calibration (right). With single-actuator calibration, some lower order shape
errors within the controllable band remain uncorrected.
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from an open-loop shape control of Zernike shapes
was found to be ∼10 nm rms smaller for the full ac-
tuator calibration. To account for actuator nonunifor-
mity, a calibration table was created for each
individual actuator. Two methods for fast calibration
of all actuators have been explored. We designate
these as the checker and grid patterns. Both of these
calibration methods are fully scalable, requiring the
same number of measurements to characterize a 3 ×
3 actuator array as they would for any larger square
array (including 12 × 12). For the checker calibration,
the actuators are divided into two groups in a check-
erboard pattern. A range of voltages at regular steps
is applied to each group independently, and informa-
tion is recorded in parallel for all actuators with each
interferometric surface measurement. The benefit of
this method is that it can be completed in the same
amount of time as a single-actuator calibration. As
can be observed in Fig. 3, the checkerboard pattern
is not amenable to high forces (compared to the grid
calibration discussed below); therefore, the checker
method does not adequately characterize the high-
force mirror states.

The grid calibration places each 3 × 3 array of ac-
tuators into a calibration group. Each of the nine ac-
tuators in the group is calibrated independently, but
all 3 × 3 groups are processed in parallel. This meth-
od characterizes the full range of possible mirror
states, but requires nine times as much calibration
time to complete as a single-actuator calibration or
checker calibration. This longer calibration time
could lead to inaccurate results if the measurement
setup is susceptible to drift, which was measured to
be 2 nm rms over 8 h. The difference in rms shape
error associated with using the checker calibration
method as opposed to grid calibration when control-

ling shapes known to have mirror forces not spanned
by the checker map varied from 10 to 30 nm rms.

For each actuator, 20 data triples (applied voltage
V , mirror force F, and mirror deflection w) are mea-
sured and interpolated to create an actuator lookup
table. It was verified that the interpolation yields
zero residuals at the measured sets. Direct mea-
surement of interpolated data triples obtained by
changing the measured sets showed that the interpo-
lation error can result in up to 5 nm rms error.

Fig. 5. (Color online) Demonstration of open-loop control for ideal 1 μm peak-to-valley astigmatism Zernike. The difference between the
desired and achieved shape, the residual error (far right) is less than 9 nm rms, just 3 nm above theminimumachievable error (6 nm rms).

Table 1. Root Mean Square Error of Zernike Shapes Tested

Residual Error
(nm rms)

Shape
Peak-to-Valley
Deflection (μm) Open Loop Closed Loop

Astigmatism 0.5 8 8
1 9 9
1.5 12 11
2 19 14
2.5 24 19

Focus 0.5 12 10
1 18 15
1.5 25 21
2 30 28
2.5 41 36

Trefoil 0.5 15 8
1 18 9
1.5 23 12
2 28 16
2.5 36 24

Coma 0.5 12 12
1 19 18
1.5 29 25
2 40 33
2.5 90 38
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The initial (unpowered) shape of the mirror was
added to the calibration deflection (w) to allow con-
trol to the desired net shape. This measurement was
filtered with a cutoff frequency of a half pitch per ac-
tuator to ensure adequate rejection of differentiation
errors. In an initial test of the refined open-loop con-
trol algorithm, the DM was flattened to 6 nm rms in
a single step after calibration.

5. Algorithm Evaluation and Discussion

The demonstration of this open-loop DM control al-
gorithm was performed using ideal, mathematically
defined target shapes. This is a departure from our
earlier open-loop control evaluation where the target
shapes were first measured on the DM. The first
shape used in this demonstration is a Zernike
astigmatism of 1 μm peak-to-valley deflection ap-
plied directly to the MEMS DM. The resulting re-
sidual wavefront shape error from our algorithm is
∼9 nm rms error for this target shape (Fig. 5).

The subsequent open-loop demonstration exer-
cises consisted of evaluating shapes that push the
limit of the DM achievable spatial frequencies. This
is accomplished with higher order Zernike polyno-
mials at higher deflections (1:5 μm and 2:5 μm peak
to valley). For the 1:5 μm peak-to-valley deflections,
the residual shape errors after the open-loop ranged
from 12 nm rms for lower order Zernike shapes, such
as astigmatism, to 29 nm rms for coma. Similarly,
the residual shape error for a 2:5 μm deflection astig-
matism and coma were 19 and 40 nm rms, respec-
tively. Table 1 lists the complete set of shapes

evaluated with corresponding residual shape errors
after the open loop.

Finally the open-loop control algorithm perfor-
mance is compared to that of its closed-loop counter-
part, and shapes with peak-to-valley deflections
using the maximum achievable stroke of the tested
device (3:5 μm) are tested. A closed-loop control
algorithm routine that used measured Zygo inter-
ferometric surface map data as feedback was imple-
mented using the same target shapes tested with the
open-loop control algorithm. Overall, the open-loop
control algorithm performed close to that of the
closed-loop control algorithm. For higher amplitude
shapes (peak-to-valley above 2 μm) and higher order
Zernike shapes (trefoil), the closed-loop control out-
performs the open-loop algorithm (Fig. 6). The differ-
ence in residual shape errors between open- and
closed-loop control algorithms are attributable to the
limitations of the calibration methodology employed.
For example, the 3 × 3 block pattern calibration
stroke limitation can be seen in the apparent
“blocky” pattern of the open-loop residual errors.

6. Conclusion

The error associated with open-loop control with a
single-actuator calibration as opposed to a lookup ta-
ble for each individual actuator was found to be
14 nm rms. The grid calibration method was found
to be the most accurate calibration method, but it
is performed over 8 h introducing 2 nm rms errors
from drift. The empirical grid calibration produces
datasets that span the entire range of voltage,

Fig. 6. (Color online) Comparison between open-loop and closed-loop performance for ideal focus Zernike shape. Input 2 μm peak-to-
valley focus shape (left). Voltage prediction (middle) using developed open-loop control algorithm (top) and closed-loop algorithm (bottom).
Residual errors between input and achieved shape using open-loop (30 nm rms) (top right). The equivalent closed-loop residual error
(bottom right) is 28 nm rms.
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deflection, and force triples possible. The fitting error
of a calibration dataset is 5 nm rms. The checker
calibration method makes the same number of mea-
surement as in a single-actuator calibration, but does
not span the entire space of deflection, voltage, and
force triples. The error introduced using a checker ca-
libration instead of the grid calibration is 10 to 30 nm
rms for shapes with forces not in the checker space.
Taking all these errors into consideration, the open-
loop control algorithm was amenable to control the
DM surface in a single iteration, based on a sparse
actuator calibration and computationally efficient al-
gorithm. The nonuniformities from the initial shape
of the mirror were added by including the 0 V mirror
shape in every desired mirror deflection wðx; yÞ. The
mirror is then flattened to 6 nm rms, representing
the effective zero-deflection plane. This ensures that
themirror forces from the analytical model of the DM
truly represent forces resulting from facesheet de-
flections. Evaluation was then conducted for higher
order Zernike shapes and a larger stroke than pre-
viously demonstrated in [8–10]. Although this work
was performed on a 12 × 12 DM, the behavior of de-
vices with higher actuator count is not expected to
reduce control accuracy.
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